direct product, metabelian, soluble, monomial, A-group
Aliases: S3×C32⋊2C8, C33⋊4(C2×C8), (S3×C32)⋊2C8, C32⋊10(S3×C8), C33⋊4C8⋊4C2, C3⋊Dic3.23D6, C33⋊5C4.1C4, D6.2(C32⋊C4), (S3×C3×C6).1C4, C6.4(C2×C32⋊C4), C2.2(S3×C32⋊C4), (C3×C6).29(C4×S3), C3⋊1(C2×C32⋊2C8), (C3×C32⋊2C8)⋊4C2, (S3×C3⋊Dic3).3C2, (C32×C6).4(C2×C4), (C3×C3⋊Dic3).26C22, SmallGroup(432,570)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — S3×C3⋊Dic3 — S3×C32⋊2C8 |
C33 — S3×C32⋊2C8 |
Generators and relations for S3×C32⋊2C8
G = < a,b,c,d,e | a3=b2=c3=d3=e8=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >
Subgroups: 544 in 88 conjugacy classes, 22 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, D6, C2×C6, C2×C8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C62, S3×C8, S3×C32, C32×C6, C32⋊2C8, C32⋊2C8, S3×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, C2×C32⋊2C8, C3×C32⋊2C8, C33⋊4C8, S3×C3⋊Dic3, S3×C32⋊2C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C4×S3, C32⋊C4, S3×C8, C32⋊2C8, C2×C32⋊C4, C2×C32⋊2C8, S3×C32⋊C4, S3×C32⋊2C8
(1 25 35)(2 26 36)(3 27 37)(4 28 38)(5 29 39)(6 30 40)(7 31 33)(8 32 34)(9 23 44)(10 24 45)(11 17 46)(12 18 47)(13 19 48)(14 20 41)(15 21 42)(16 22 43)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 33)(24 34)(25 46)(26 47)(27 48)(28 41)(29 42)(30 43)(31 44)(32 45)
(1 25 35)(3 37 27)(5 29 39)(7 33 31)(9 23 44)(11 46 17)(13 19 48)(15 42 21)
(1 25 35)(2 36 26)(3 37 27)(4 28 38)(5 29 39)(6 40 30)(7 33 31)(8 32 34)(9 23 44)(10 45 24)(11 46 17)(12 18 47)(13 19 48)(14 41 20)(15 42 21)(16 22 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,23,44)(10,24,45)(11,17,46)(12,18,47)(13,19,48)(14,20,41)(15,21,42)(16,22,43), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,25,35)(3,37,27)(5,29,39)(7,33,31)(9,23,44)(11,46,17)(13,19,48)(15,42,21), (1,25,35)(2,36,26)(3,37,27)(4,28,38)(5,29,39)(6,40,30)(7,33,31)(8,32,34)(9,23,44)(10,45,24)(11,46,17)(12,18,47)(13,19,48)(14,41,20)(15,42,21)(16,22,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,23,44)(10,24,45)(11,17,46)(12,18,47)(13,19,48)(14,20,41)(15,21,42)(16,22,43), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,25,35)(3,37,27)(5,29,39)(7,33,31)(9,23,44)(11,46,17)(13,19,48)(15,42,21), (1,25,35)(2,36,26)(3,37,27)(4,28,38)(5,29,39)(6,40,30)(7,33,31)(8,32,34)(9,23,44)(10,45,24)(11,46,17)(12,18,47)(13,19,48)(14,41,20)(15,42,21)(16,22,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,25,35),(2,26,36),(3,27,37),(4,28,38),(5,29,39),(6,30,40),(7,31,33),(8,32,34),(9,23,44),(10,24,45),(11,17,46),(12,18,47),(13,19,48),(14,20,41),(15,21,42),(16,22,43)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,33),(24,34),(25,46),(26,47),(27,48),(28,41),(29,42),(30,43),(31,44),(32,45)], [(1,25,35),(3,37,27),(5,29,39),(7,33,31),(9,23,44),(11,46,17),(13,19,48),(15,42,21)], [(1,25,35),(2,36,26),(3,37,27),(4,28,38),(5,29,39),(6,40,30),(7,33,31),(8,32,34),(9,23,44),(10,45,24),(11,46,17),(12,18,47),(13,19,48),(14,41,20),(15,42,21),(16,22,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 3 | 3 | 2 | 4 | 4 | 8 | 8 | 9 | 9 | 27 | 27 | 2 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 9 | 9 | 9 | 9 | 27 | 27 | 27 | 27 | 18 | 18 | 18 | 18 | 18 | 18 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | - | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | S3 | D6 | C4×S3 | S3×C8 | C32⋊C4 | C32⋊2C8 | C2×C32⋊C4 | S3×C32⋊C4 | S3×C32⋊2C8 |
kernel | S3×C32⋊2C8 | C3×C32⋊2C8 | C33⋊4C8 | S3×C3⋊Dic3 | C33⋊5C4 | S3×C3×C6 | S3×C32 | C32⋊2C8 | C3⋊Dic3 | C3×C6 | C32 | D6 | S3 | C6 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 2 | 2 |
Matrix representation of S3×C32⋊2C8 ►in GL6(𝔽73)
72 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 1 | 72 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 51 | 0 |
0 | 0 | 51 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 51 |
0 | 0 | 0 | 51 | 0 | 0 |
G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,72,0,0,0,0,1,0,0,0,0,72,72,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,51,0,0,51,0,0,0,0,0,0,0,51,0] >;
S3×C32⋊2C8 in GAP, Magma, Sage, TeX
S_3\times C_3^2\rtimes_2C_8
% in TeX
G:=Group("S3xC3^2:2C8");
// GroupNames label
G:=SmallGroup(432,570);
// by ID
G=gap.SmallGroup(432,570);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,36,58,1411,298,1356,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^3=e^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations