Copied to
clipboard

G = S3×C322C8order 432 = 24·33

Direct product of S3 and C322C8

direct product, metabelian, soluble, monomial, A-group

Aliases: S3×C322C8, C334(C2×C8), (S3×C32)⋊2C8, C3210(S3×C8), C334C84C2, C3⋊Dic3.23D6, C335C4.1C4, D6.2(C32⋊C4), (S3×C3×C6).1C4, C6.4(C2×C32⋊C4), C2.2(S3×C32⋊C4), (C3×C6).29(C4×S3), C31(C2×C322C8), (C3×C322C8)⋊4C2, (S3×C3⋊Dic3).3C2, (C32×C6).4(C2×C4), (C3×C3⋊Dic3).26C22, SmallGroup(432,570)

Series: Derived Chief Lower central Upper central

C1C33 — S3×C322C8
C1C3C33C32×C6C3×C3⋊Dic3S3×C3⋊Dic3 — S3×C322C8
C33 — S3×C322C8
C1C2

Generators and relations for S3×C322C8
 G = < a,b,c,d,e | a3=b2=c3=d3=e8=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >

Subgroups: 544 in 88 conjugacy classes, 22 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, D6, C2×C6, C2×C8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C62, S3×C8, S3×C32, C32×C6, C322C8, C322C8, S3×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C335C4, S3×C3×C6, C2×C322C8, C3×C322C8, C334C8, S3×C3⋊Dic3, S3×C322C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C4×S3, C32⋊C4, S3×C8, C322C8, C2×C32⋊C4, C2×C322C8, S3×C32⋊C4, S3×C322C8

Smallest permutation representation of S3×C322C8
On 48 points
Generators in S48
(1 25 35)(2 26 36)(3 27 37)(4 28 38)(5 29 39)(6 30 40)(7 31 33)(8 32 34)(9 23 44)(10 24 45)(11 17 46)(12 18 47)(13 19 48)(14 20 41)(15 21 42)(16 22 43)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 33)(24 34)(25 46)(26 47)(27 48)(28 41)(29 42)(30 43)(31 44)(32 45)
(1 25 35)(3 37 27)(5 29 39)(7 33 31)(9 23 44)(11 46 17)(13 19 48)(15 42 21)
(1 25 35)(2 36 26)(3 37 27)(4 28 38)(5 29 39)(6 40 30)(7 33 31)(8 32 34)(9 23 44)(10 45 24)(11 46 17)(12 18 47)(13 19 48)(14 41 20)(15 42 21)(16 22 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,23,44)(10,24,45)(11,17,46)(12,18,47)(13,19,48)(14,20,41)(15,21,42)(16,22,43), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,25,35)(3,37,27)(5,29,39)(7,33,31)(9,23,44)(11,46,17)(13,19,48)(15,42,21), (1,25,35)(2,36,26)(3,37,27)(4,28,38)(5,29,39)(6,40,30)(7,33,31)(8,32,34)(9,23,44)(10,45,24)(11,46,17)(12,18,47)(13,19,48)(14,41,20)(15,42,21)(16,22,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,23,44)(10,24,45)(11,17,46)(12,18,47)(13,19,48)(14,20,41)(15,21,42)(16,22,43), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,25,35)(3,37,27)(5,29,39)(7,33,31)(9,23,44)(11,46,17)(13,19,48)(15,42,21), (1,25,35)(2,36,26)(3,37,27)(4,28,38)(5,29,39)(6,40,30)(7,33,31)(8,32,34)(9,23,44)(10,45,24)(11,46,17)(12,18,47)(13,19,48)(14,41,20)(15,42,21)(16,22,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,25,35),(2,26,36),(3,27,37),(4,28,38),(5,29,39),(6,30,40),(7,31,33),(8,32,34),(9,23,44),(10,24,45),(11,17,46),(12,18,47),(13,19,48),(14,20,41),(15,21,42),(16,22,43)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,33),(24,34),(25,46),(26,47),(27,48),(28,41),(29,42),(30,43),(31,44),(32,45)], [(1,25,35),(3,37,27),(5,29,39),(7,33,31),(9,23,44),(11,46,17),(13,19,48),(15,42,21)], [(1,25,35),(2,36,26),(3,37,27),(4,28,38),(5,29,39),(6,40,30),(7,33,31),(8,32,34),(9,23,44),(10,45,24),(11,46,17),(12,18,47),(13,19,48),(14,41,20),(15,42,21),(16,22,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F6G6H6I8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122233333444466666666688888888121224242424
size1133244889927272448812121212999927272727181818181818

36 irreducible representations

dim1111111222244488
type+++++++-++-
imageC1C2C2C2C4C4C8S3D6C4×S3S3×C8C32⋊C4C322C8C2×C32⋊C4S3×C32⋊C4S3×C322C8
kernelS3×C322C8C3×C322C8C334C8S3×C3⋊Dic3C335C4S3×C3×C6S3×C32C322C8C3⋊Dic3C3×C6C32D6S3C6C2C1
# reps1111228112424222

Matrix representation of S3×C322C8 in GL6(𝔽73)

7210000
7200000
001000
000100
000010
000001
,
010000
100000
0072000
0007200
0000720
0000072
,
100000
010000
0072001
0000720
0001720
0072000
,
100000
010000
001000
0007210
0007200
000001
,
7200000
0720000
0000510
0051000
0000051
0005100

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,72,0,0,0,0,1,0,0,0,0,72,72,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,51,0,0,51,0,0,0,0,0,0,0,51,0] >;

S3×C322C8 in GAP, Magma, Sage, TeX

S_3\times C_3^2\rtimes_2C_8
% in TeX

G:=Group("S3xC3^2:2C8");
// GroupNames label

G:=SmallGroup(432,570);
// by ID

G=gap.SmallGroup(432,570);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,36,58,1411,298,1356,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^3=e^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations

׿
×
𝔽